Track Awesome Artificial Intelligence Updates Weekly
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.
🏠 Home · 🔍 Search · 🔥 Feed · 📮 Subscribe · ❤️ Sponsor · 😺 owainlewis/awesome-artificial-intelligence · ⭐ 8.9K · 🏷️ Theory
Mar 11 - Mar 17, 2024
Tools
- Chat GPT ChatGPT is a free-to-use AI system. It allows users to engage in conversations, gain insights, automate tasks, and witness the future of AI all in one place.
- Gemini Gemini gives you direct access to Google AI. Get help with writing, planning, learning, and more.
- DALL·E 2 DALL·E 3 is an AI system that can create realistic images and art from a natural-language description.
- Sora Sora is a text-to-video AI model that can create realistic and imaginative scenes from text instructions.
- Claude Claude is a family of foundational AI models that can be used in various applications. You can talk directly with Claude at claude.ai to brainstorm ideas, analyze images, and process long documents
Courses
- Machine Learning Observability Course - Self-guided course covers the intuition, math, and best practices for effective machine learning observability.
Books
- Generative AI in Action - A book that shows exactly how to add generative AI tools for text, images, and code, and more into your organization’s strategies and projects..
Newsletters
- Superhuman.ai A daily AI newsletter
Mar 04 - Mar 10, 2024
Courses
- Introduction to Artificial Intelligence (AI) - A high-level introduction to AI from IBM on Coursera
- Introduction to Generative AI - A beginner-level introduction to Generative AI from Google on Coursera
Aug 08 - Aug 14, 2022
Courses
- MIT Artificial Intelligence Videos - MIT AI Course
- Amazon Machine Learning Developer Guide - A book for ML developers which introduces the ML concepts & strategies with lots of practical usages.
Philosophy
- Minds, Brains, And Programs - The 1980 paper by philosopher John Searle that contains the famous 'Chinese Room' thought experiment. It is probably the most famous attack on the notion of a Strong AI possessing a 'mind' or a 'consciousness', and it is an interesting reading for those interested in the intersection of AI and philosophy of mind.
- Gödel, Escher, Bach: An Eternal Golden Braid - Written by Douglas Hofstadter and taglined "a metaphorical fugue on minds and machines in the spirit of Lewis Carroll", this incredible journey into the fundamental concepts of mathematics, symmetry and intelligence won a Pulitzer Prize for Non-Fiction in 1979. A major theme throughout is the emergence of meaning from seemingly 'meaningless' elements, like 1's and 0's, arranged in special patterns.
Learning
- Awesome Graph Classification (⭐4.7k) - Learning from graph structured data
Journals
Jul 05 - Jul 11, 2021
Books
- Trust in Machine Learning - a book for experienced data scientists and machine learning engineers on how to make your AI a trustworthy partner. Build machine learning systems that are explainable, robust, transparent, and optimized for fairness.
Free Content
- Modeling Agents with Probabilistic Programs - This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning.
Mar 22 - Mar 28, 2021
Courses
- CS50’s Intro to Artificial Intelligence - This course explores the concepts and algorithms at the foundation of modern artificial intelligence
- Deep Learning - An Introductory course to Deep Learning using TensorFlow.
Books
- How Machine Learning Works - Mostafa Samir. Early access book that introduces machine learning from both practical and theoretical aspects in a non-threatening way.
Programming
Free Content
- Artificial Intelligence and Molecular Biology - The current volume is an effort to bridge that range of exploration, from nucleotide to abstract concept, in contemporary AI/MB research.
- Encyclopedia: Computational intelligence - Scholarpedia is a peer-reviewed open-access encyclopedia written and maintained by scholarly experts from around the world.
Learning
- Deep Learning - Yoshua Bengio, Ian Goodfellow and Aaron Courville put together this currently free (and draft version) book on deep learning. The book is kept up-to-date and covers a wide range of topics in depth (up to and including sequence-to-sequence learning).
- Deep Learning.net - Aggregation site for DL resources
Journals
Jan 25 - Jan 31, 2021
Courses
- (Stanford Deep Learning Series][https://www.youtube.com/playlist?list=PLoROMvodv4rOABXSygHTsbvUz4G_YQhOb]
- Machine Learning for Humans - A series of simple, plain-English explanations accompanied by math, code, and real-world examples.
Books
- The Hundred-Page Machine Learning Book - all you need to know about Machine Learning in a hundred pages, supervised and unsupervised learning, SVM, neural networks, ensemble methods, gradient descent, cluster analysis and dimensionality reduction, autoencoders and transfer learning, feature engineering and hyperparameter tuning.
Organizations
Dec 28 - Jan 03, 2020
Courses
- Transfer Learning for Natural Language Processing - A book that gets you up to speed with the relevant ML concepts and then dives into transfer learning for NLP.
Aug 31 - Sep 06, 2020
Code
- ExplainX (⭐380)- ExplainX is a fast, lightweight, and scalable explainable AI framework for data scientists to explain any black-box model to business stakeholders.
Jul 06 - Jul 12, 2020
Books
- Serverless Machine Learning - a book for machine learning engineers on how to train and deploy machine learning systems on public clouds like AWS, Azure, and GCP, using a code-oriented approach.
Mar 16 - Mar 22, 2020
Courses
- Kaggle's micro courses - A series of micro courses by offering practical and hands-on knowledge ranging from Python to Deep Learning.
Books
- MachineLearningWithTensorFlow2ed is a book on general-purpose machine learning techniques, including regression, classification, unsupervised clustering, reinforcement learning, autoencoders, convolutional neural networks, RNNs, and LSTMs, using TensorFlow 1.14.1.
Organizations
Misc
Dec 16 - Dec 22, 2019
Courses
- Essential Natural Language Processing - A hands-on guide to NLP with practical techniques, numerous Python-based examples and real-world case studies.
Nov 04 - Nov 10, 2019
Courses
- Succeeding with AI - An introduction to managing successful AI projects and applying AI to real-life situations.
Sep 16 - Sep 22, 2019
Learning
- Awesome Neural Art (⭐87) - Creating art and manipulating images using deep neural networks.
Aug 12 - Aug 18, 2019
Courses
- Elements of AI (Part 1) - Reaktor/University of Helsinki - An Introduction to AI is a free online course for everyone interested in learning what AI is, what is possible (and not possible) with AI, and how it affects our lives – with no complicated math or programming required.
Jul 29 - Aug 04, 2019
Courses
- MIT: Intro to Deep Learning - A seven-day bootcamp designed in MIT to introduce deep learning methods and applications
- Deep Blueberry: Deep Learning book - A free five-weekend plan for self-learners to learn the basics of deep-learning architectures like CNNs, LSTMs, RNNs, VAEs, GANs, DQN, A3C and more
- Spinning Up in Deep Reinforcement Learning - A free deep reinforcement learning course by OpenAI
- Real-World Natural Language Processing - Early access book on how to create practical NLP applications using Python.
- Grokking Machine Learning - Early access book that introduces the most valuable machine learning techniques.
Books
- Machine Learning for Mortals (Mere and Otherwise) - Early access book that provides basics of machine learning and using R programming language.
Journals
Jun 03 - Jun 09, 2019
Free Content
- R2D3 - A website with explanations on topics from Machine Learning to Statistics. All helped with beautifully animated infographics and real-life examples. Available in various languages.
Learning
- Awesome Community Detection (⭐2.3k) - Clustering graph structured data
- Awesome Decision Tree Papers (⭐2.3k) - Decision tree papers from machine learning conferences
- Awesome Gradient Boosting Papers (⭐975) - Gradient boosting papers from machine learning conferences
- Awesome Fraud Detection Papers (⭐1.5k) - Fraud detection papers from machine learning conferences
Mar 11 - Mar 17, 2019
Videos
- Reinforcement Learning in Motion - This live-video breaks down critical concepts like how RL systems learn, how to sense and process environmental data, and how to build and train AI agents.
Nov 26 - Dec 02, 2018
Courses
- Deep Learning Crash Course In this liveVideo course, machine learning expert Oliver Zeigermann teaches you the basics of deep learning.
- Fusion in Action - Fusion in Action teaches you to build a full-featured data analytics pipeline, including document and data search and distributed data clustering.
Oct 29 - Nov 04, 2018
Organizations
Oct 22 - Oct 28, 2018
Courses
- Machine Learning Crash Course By Google Machine Learning Crash Course features a series of lessons with video lectures, real-world case studies, and hands-on practice exercises.
- Python Class By Google This is a free class for people with a little bit of programming experience who want to learn Python. The class includes written materials, lecture videos, and lots of code exercises to practice Python coding.
Sep 17 - Sep 23, 2018
Courses
- Deep Learning and the Game of Go - Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex human-flavored reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game.
- Deep Learning for Search - Deep Learning for Search teaches you how to leverage neural networks, NLP, and deep learning techniques to improve search performance.
- Deep Learning with PyTorch - PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you—and your deep learning skills—become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun.
- Deep Reinforcement Learning in Action - Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects.
- Grokking Deep Reinforcement Learning - Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching.
Philosophy
- Life 3.0: Being Human in the Age of Artificial Intelligence - Max Tegmark, professor of Physics at MIT, discusses how Artificial Intelligence may affect crime, war, justice, jobs, society and our very sense of being human both in the near and far future.
Videos
- AWS Machine Learning in Motion—This interactive live video course gives you a crash course in using AWS for machine learning and teaches you how to build a fully working predictive algorithm.
- Deep Learning with R in Motion-Deep Learning with R in Motion teaches you to apply deep learning to text and images using the powerful Keras library and its R language interface.
- Grokking Deep Learning in Motion-Grokking Deep Learning in Motion will not just teach you how to use a single library or framework. You’ll discover how to build these algorithms from scratch!
Organizations
Misc
Aug 06 - Aug 12, 2018
Courses
- Grokking Deep Learning in Motion - Beginner's course to learn deep learning and neural networks without frameworks.
Learning
- Professional and In-Depth Machine Learning Video Courses - A collection of free professional and in-depth Machine Learning and Data Science video tutorials and courses
- Professional and In-Depth Artificial Intelligence Video Courses - A collection of free professional and in-depth Artificial Intelligence video tutorials and courses
- Professional and In-Depth Deep Learning Video Courses - A collection of free professional and in-depth Deep Learning video tutorials and courses
- Introduction to Machine Learning - Introductory level machine learning crash course
Jul 30 - Aug 05, 2018
Free Content
- Golden Artificial Intelligence - a cluster of pages on artificial intelligence and machine learning.
Jun 25 - Jul 01, 2018
Courses
- Deep RL Bootcamp Lectures - Deep Reinforcement Bootcamp Lectures - August 2017
Jan 29 - Feb 04, 2018
Code
- FARGonautica (⭐107) - Source code of Douglas Hosftadter's Fluid Concepts and Creative Analogies Ph.D. projects.
Oct 09 - Oct 15, 2017
Courses
- Deep Learning - Goodfellow, Bengio and Courville's introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction - Hastie and Tibshirani cover a broad range of topics, from supervised learning (prediction) to unsupervised learning including neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.
Aug 21 - Aug 27, 2017
Courses
- Reinforcement Learning: An Introduction - This introductory textbook on reinforcement learning is targeted toward engineers and scientists in artificial intelligence, operations research, neural networks, and control systems, and we hope it will also be of interest to psychologists and neuroscientists.
Jul 10 - Jul 16, 2017
Free Content
- Stanford CS229 - Machine Learning - This course provides a broad introduction to machine learning and statistical pattern recognition.
Jul 03 - Jul 09, 2017
Learning
- Awesome Deep Learning Resources (⭐1.6k) - Rough list of learning resources for Deep Learning
Jun 26 - Jul 02, 2017
Competitions
Jul 11 - Jul 17, 2016
Philosophy
- Super Intelligence - Superintelligence asks the question: What happens when machines surpass humans in general intelligence?
Free Content
- Brief Introduction To Educational Implications Of Artificial Intelligence - This book is designed to help preservice and inservice teachers learn about some of the educational implications of current uses of Artificial Intelligence as an aid to solving problems and accomplishing tasks.
Code
- AIMACode - Source code for "Artificial Intelligence: A Modern Approach" in Common Lisp, Java, and Python. More to come.
May 02 - May 08, 2016
Organizations
Apr 04 - Apr 10, 2016
Courses
- Artificial Intelligence: A Modern Approach - Stuart Russell & Peter Norvig
- Also consider browsing the list of recommended reading, divided by each chapter in "Artificial Intelligence: A Modern Approach".
Misc
- AIResources - Directory of open source software and open access data for the AI research community
Mar 28 - Apr 03, 2016
Videos
Feb 22 - Feb 28, 2016
Courses
- Knowledge Based Artificial Intelligence - Georgia Tech's course on Artificial Intelligence focussing on Symbolic AI.
Free Content
- Society of Mind - Marvin Minsky's seminal work on how our mind works. Lot of Symbolic AI concepts have been derived from this basis.
Jan 04 - Jan 10, 2016
Videos
Oct 26 - Nov 01, 2015
Misc
- Open Cognition Project - We're undertaking a serious effort to build a thinking machine
- AITopics - Large aggregation of AI resources
Sep 28 - Oct 04, 2015
Competitions
Sep 14 - Sep 20, 2015
Programming
Code
- FANN - Fast Artificial Neural Network Library, native for C
Learning
- Awesome Machine Learning (⭐63k) - Like this Github, but ML-focused
Organizations
Journals
Jun 29 - Jul 05, 2015
Courses
- Artificial Intelligence For Robotics - This class will teach you basic methods in Artificial Intelligence, including probabilistic inference, planning and search, localization, tracking and control, all with a focus on robotics
- Paradigms Of Artificial Intelligence Programming: Case Studies in Common Lisp - Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems
- The Cambridge Handbook Of Artificial Intelligence - Written for non-specialists, it covers the discipline's foundations, major theories, and principal research areas, plus related topics such as artificial life
- On Intelligence - Hawkins develops a powerful theory of how the human brain works, explaining why computers are not intelligent and how, based on this new theory, we can finally build intelligent machines. Also audio version available from audible.com
- How To Create A Mind - Kurzweil discusses how the brain works, how the mind emerges, brain-computer interfaces, and the implications of vastly increasing the powers of our intelligence to address the world’s problems
Programming
- Prolog Programming For Artificial Intelligence - This best-selling guide to Prolog and Artificial Intelligence concentrates on the art of using the basic mechanisms of Prolog to solve interesting AI problems.
Philosophy
- Our Final Invention: Artificial Intelligence And The End Of The Human Era - Our Final Invention explores the perils of the heedless pursuit of advanced AI. Until now, human intelligence has had no rival. Can we coexist with beings whose intelligence dwarfs our own? And will they allow us to?
Free Content
- Foundations Of Computational Agents - This book is published by Cambridge University Press
- The Quest For Artificial Intelligence - This book traces the history of the subject, from the early dreams of eighteenth-century (and earlier) pioneers to the more successful work of today's AI engineers.
Videos
- The Unreasonable Effectiveness Of Deep Learning - The Director of Facebook's AI Research, Dr. Yann LeCun gives a talk on deep convolutional neural networks and their applications to machine learning and computer vision
Learning
- Deep Learning. Methods And Applications Free book from Microsoft Research
- Neural Networks And Deep Learning - Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning
Feb 09 - Feb 15, 2015
Philosophy
- How to Create a Mind: The Secret of Human Thought Revealed - Ray Kurzweil, director of engineering at Google, explored the process of reverse-engineering the brain to understand precisely how it works, then applies that knowledge to create vastly intelligent machines.
Free Content
- Computers and Thought: A practical Introduction to Artificial Intelligence - The book covers computer simulation of human activities, such as problem-solving and natural language understanding; computer vision; AI tools and techniques; an introduction to AI programming; symbolic and neural network models of cognition; the nature of mind and intelligence; and the social implications of AI and cognitive science.
- Ethical Artificial Intelligence - a book by Bill Hibbard that combines several peer-reviewed papers and new material to analyze the issues of ethical artificial intelligence.
Feb 02 - Feb 08, 2015
Courses
- Intro to Artificial Intelligence - Learn the Fundamentals of AI. Course run by Peter Norvig
- EdX Artificial Intelligence - The course will introduce the basic ideas and techniques underlying the design of intelligent computer systems
- Machine Learning - Basic machine learning algorithms for supervised and unsupervised learning
- Stanford Statistical Learning - Introductory course on machine learning focusing on linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines.
- The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind - In this mind-expanding book, scientific pioneer Marvin Minsky continues his groundbreaking research, offering a fascinating new model for how our minds work
- Artificial Intelligence: A New Synthesis - Beginning with elementary reactive agents, Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI
Learning
- Machine Learning: A Probabilistic Perspective - This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach